D. Picking up some Formal Quantum Mechanics

(i) Inspect
$$
\{\psi_n(x)\}
$$
 of $\hat{H}\psi_n = E_n \psi_n$ for 1D box
\nRecall: $\psi_n(x) = \begin{cases} \sqrt{\frac{2}{a}} \sin(\frac{n\pi x}{a}) & 0 < x < a \\ 0 & x < 0 \text{ a } a \neq a \end{cases}$
\n $E_n = \frac{n^2 \pi^2 k^2}{2ma^2}$
\nThey are orthogonal: $(\pm \pm \omega)$
\nThis statement is about the set of eigenfunctions of \hat{H}
\n $\{\psi_1, \psi_2, \dots, \psi_n, \text{...}\}$ (infinitely many of them)

To define orthogonality, formally we need a way to
"put two functions together".

Recall: In considering normalization, we consider the integral $\int_{-\infty}^{\infty} |\psi_n(x)|^2 dx = \int_{-\infty}^{\infty} \psi_n^*(x) \psi_n(x) dx$

- · Motivated by intensity in light
- We chose $\psi_n(x)$ to be real in 1D box, it is actually
up to a phase, using $\psi_n^* \psi_n$ is move formal

To consider orthogonality, we consider the integral $\int_{-\infty}^{\infty} \psi_i^*(x) \psi_j(x) dx$
different energy eigenfunctions (formally defines an <u>inner product</u>)
between functions)

In QM, we need to consider complex wavefunctions in general. This integral is suitable for the purpose.

Applying this to
$$
\{ \psi_n(x) \}
$$
 of 1D Box, $\int_{\infty}^{\infty} n \neq m$

$$
\int_{-\infty}^{\infty} \psi_n^*(x) \psi_n(x) dx = \frac{2}{a} \int_{0}^{a} \sin(\frac{n \pi x}{a}) \sin(\frac{m \pi x}{a}) dx = 0 \quad (n \neq m)
$$

Can see this pictorially or mathematically

: We have $\int_{\infty}^{\infty} \psi_n^*(x) \psi_m(x) dx = 0$ for $n \neq m$ This is what "Energy eigenfunctions are orthogonal" meant.

Remark: We saw this property explicitly among the energy eigenfunctions of particle-in-a-1D-box. **The property is, in fact, general.**

Examples:

- Different energy eigenfunctions of 1D harmonic oscillator are orthogonal
- Hydrogen atom different "atomic orbitals" (what you call 1s, 2s,…,3d,…) can be made orthogonal to each other

Why is it called "orthogonal" ? (Anology to vectors in 3D)
Consider unit vectors in x-direction ?, y-direction j, z-direction, k
These unit vectors are orthogonal to each other
Meaning :
$$
\hat{i} \cdot \hat{j} = \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{k} = 0
$$

 $\hat{i} \cdot \hat{j}$ is the equivalence of $\int_{-\infty}^{\infty} y_i^*(x) y_j(x) dx$ (inner products)
for vectors

[This is a useful analogy that can be carried out further, see later]

Orthonormal set of eigenfunctions (Eexin)
Together with normalization $\int_{-\infty}^{\infty} \psi_n^*(x) \psi_n(x) dx = 1$
the <u>in</u> thogonal and <u>inomialized</u> properties
$\{\psi_1, \psi_2, \cdots, \psi_n, \cdots\}$ is a set of orthonormal functions
Meaning: $\int_{-\infty}^{\infty} \psi_i^*(x) \psi_i(x) dx = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$ Kronecker
Key point: TISE solutions (energy eigenfunctions) have nice properties.
They form a set of orthonormal functions.

Extension: $\hat{A} \phi_n = a_n \phi_n$ $\int \phi_i^* \phi_j \, dx = \delta_{ij}$
all space

To convey key QM concepts, we will use this form of
orthonormal relationship between eigenfunctions.

+ As mentioned, there are eigenfunctions that cannot be mormalized. In such cases,
other "wormalization" criterions is invoked and typically the Dirac S-function
enters into the relationship instead of the Kronecker S-func

(ii) Expand any exception in terms of Energy Eigenfunctions
\nAnalogy :
$$
\hat{i}
$$
, \hat{j} , \hat{k} .
\nAny vector \vec{V} in 3D
\n
$$
\nabla^2 = V_x \hat{i} + V_y \hat{j} + V_z \hat{k}
$$
\n
$$
\nabla^2 W_x = \hat{i} \cdot \nabla (component in x)
$$
\n
$$
V_y = \hat{j} \cdot \nabla (component in y)
$$
\n
$$
V_z = \hat{k} \cdot \nabla (component in y)
$$
\n
$$
V_z = \hat{k} \cdot \nabla (component in y)
$$
\n
$$
V_z = \hat{k} \cdot \nabla (component in y)
$$
\n
$$
V_x = \hat{i} \cdot \nabla y + f(x)
$$
\n
$$
V_y = \hat{j} \cdot \nabla y + f(x)
$$

Inspect $1D$ Box $\mathcal{V}_n(x)$'s

and infinitely many more...

Any function that is compatible with the problem (or set $\{\psi, \dots, \psi_n, \dots\}$) Meaning: "Any" function I(x) 3ero here
induling at x=0 zerohere
including at x=a Well-behaved in $0 < x < a$ Can be expressed as $\Phi(x) = \sum_{n=0}^{\infty} C_n \psi_n(x)$

$$
\begin{array}{rcl}\n\overline{\Phi}(x) &=& \sum_{r=1}^{\infty} C_r \sqrt{r}(x) \qquad \text{can always be done} \\
\text{Given a form} & \text{known after solving} \text{TISE} \\
\cdot & \text{Left multiply by } \sqrt{\frac{r}{m}}(x) \text{ [one of } \sqrt{y}, \dots, \psi, \dots \text{] an complex conjugate it} \\
\cdot & \text{Integrate over all space} \\
\int_{-\infty}^{\infty} \sqrt{\frac{r}{m}}(x) \overline{\Phi}(x) dx = \sum_{n=1}^{\infty} C_n \int_{-\infty}^{\infty} \sqrt{\frac{r}{m}}(x) \psi_n(x) dx = \sum_{r=1}^{\infty} C_n \sum_{r=1}^{\infty} C_{n-r} \\
\text{orthonormal} & \text{Definition} \\
\therefore & \text{Milu 2008 OMP} \text{ (a) from 5001} \text{ (b) the equation are in } \mathbb{R}^2.\n\end{array}
$$

 \bullet

$$
\therefore
$$
 You give me a form $\Phi(x)$, the expansion can always be done
by choosing the expansion coefficients C_n to be
 $C_n = \int_{-\infty}^{\infty} \psi_n^*(x) \Phi(x) dx$ One!

 $10\,$

The idea is closely related to that of expressing vectors in terms of unit vectors

 $\overline{\Phi}(x) = \sum_{n=1}^{\infty} C_n \psi_n(x)$ $=\sum_{n=1}^{\infty}\left(\int_{-\infty}^{\infty}\gamma_{n}^{*}(x)\,\overline{\Phi}(x)dx\right)\,\psi_{n}^{\prime}(x)$ "Component" of Ie(x) along "axis"
defined by Yn(x) is $\int_{a}^{\infty} \psi_n^*(x) \ \overline{\Phi}(x) dx$ inner product of basis function and $\Phi(x)$ It projects II(x) onto "axis" along $\psi_n(x)$.

Introducing a name: "Completeness" (完備) When an expansion $\Phi(x) = \sum_{n=1}^{\infty} C_n \psi_n(x)$ can be done For $AMY \nsubseteq K$. {Vi(x), ..., Vi(x), ...} is called a complete set. So. ALL Energy eigenfunctions form a complete set must include All of them

Summary

TISE gives $\{ \psi_n(x) \}$ and E_n Any function can be expanded as $\Phi(x) = \sum_{n=0}^{\infty} C_n \psi_n(x)$ (1) and C_n 's are given by $C_n = \int_{0}^{\infty} \psi_n^*(x) \Phi(x) dx$ (2)

With E_3 . (1) and E_3 . (2), we can answer initial value problems. because each component Cn Vn(x) evalues as Cn $e^{iE_n t}$ in time $(\text{sec } \text{Ch.}\,\overline{\mu})$

Mathematically, this is analogous to expressing vectors AND doing Fourier analysis

Extension:
$$
\Omega M
$$
 operator: $\hat{A} \phi_n = \alpha_n \phi_n$ (not necessarily \hat{H})

\n $\{\phi_n, \dots, \phi_n, \dots\}$ can also be used to expand any $\Phi(x)$ orthonormal

\n $\Phi(x) = \sum_{n=1}^{\infty} \widehat{C_n} \phi_n(x)$ with $\widehat{C_n} = \int \phi_n^*(x) \Phi(x) dx$

\ndiagonalitys of \hat{A}

\n $E_1 \oplus \dots \oplus E_n$ is a real number of integers.

\nThe expansion is just Fourier transforms, the expansion is just Fourier transforms.

\nAND \hat{A} is the momentum operator \hat{P} as $\mathbb{C}^{ik, x}$ are eigenfunctions of \hat{P} .